

# A.D.M College For Women (Autonomous) Nationally Accredited with ' A' Grade by NAAC (Cycle-III)

Nationally Accredited with ' A' Grade by NAAC (Cycle-III, Nagapattinam -611 001 TamilNadu.

# **M.Sc. Physics**



Employability

Entrepreneurship

**Skill Development** 

dinnin tinni

| Name of the  | Course | <b>Title of The Course</b> | Employability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Entrepreneurship | Skill        |
|--------------|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| Programme    | code   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | development  |
|              | PGPD   | Methods of                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | ✓            |
|              |        | Spectroscopy               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPE1  | Microprocessor and         | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |              |
|              |        | Microcontroller            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPE2  | Numerical Methods          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              |        | and C++                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\checkmark$     |              |
|              |        | Programming                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPE3  | Nano Materials and         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | ✓            |
|              |        | Applications               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPE4  | Communication              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | $\checkmark$ |
|              |        | Physics                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPE5  | Advanced                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | $\checkmark$ |
| M.Sc Physics |        | Experimental Physics       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPA   | Mathematical               | <ul> <li>Image: A set of the set of the</li></ul> |                  |              |
|              |        | Physics                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPD   | Classical Dynamics         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                |              |
|              |        | and relativity             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPC   | Electronics                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\checkmark$     | $\checkmark$ |
|              | PGPF   | Electromagnetic            | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |
|              |        | Theory                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPG   | Quantum Mechanics          | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |
|              | PGPI   | Statistical Mechanics      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\checkmark$     | $\checkmark$ |
|              | PGPJ   | Solid state Physics        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |
|              | PGPL   | Nuclear and Particle       | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |
|              |        | Physics                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |
|              | PGPM   | Advanced Physics           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\checkmark$     | $\checkmark$ |

## M.Sc., Physics Employability

| Course & Title     | ELECTIVE COURSE I / MICROPROCESSOR AND MICROCONTROLLER |                  |    |  |  |
|--------------------|--------------------------------------------------------|------------------|----|--|--|
| Class              | I MSc Physics                                          | Semester         | II |  |  |
| Internal Marks -25 | External Marks-75                                      | Total Marks: 100 | 0  |  |  |

## **Course Objectives**

- To understand the basic concept of microprocessor.
- To understand techniques for faster execution of instructions and improve speed of operation and performance microprocessors.
- To learn the fundamental programming concept and methodologies.
- To understand the basic architecture of intel 8085 microprocessor.
- To practice the fundamental programming methodologies in c programming language.

| <u> </u>  |                                                                       |        |
|-----------|-----------------------------------------------------------------------|--------|
| Cognitive | K-1 Acquire/Remember                                                  |        |
| Level     | K-2 Understand                                                        |        |
|           | K-3 Apply                                                             |        |
|           | K-4 Analyze                                                           |        |
|           | K-5 Evaluate                                                          |        |
|           | K-6 Create                                                            |        |
| UNIT      | CONTENT                                                               | NO OF  |
|           |                                                                       | HOURS  |
| Ι         | MICROPROCESSOR ARCHITECTURE AND INTERFACING                           | 15 Hrs |
|           | Intel 8085 microprocessor architecture – Pin configuration –          |        |
|           | Instruction cycle – Timing diagram – Instruction and data formats –   |        |
|           | Addressing modes Memory manning and I/O manning I/O scheme            |        |
|           | Momory mapping I/O interfacingData transfer schemes                   |        |
|           | Sumphranous and sumphranous data transfer. Interment driven data      |        |
|           | Synchronous and asynchronous data transfer – interrupt driven data    |        |
|           | transfer - Interrupts of Intel 8085.                                  |        |
| II        | UNIT II ASSEMBLY LANGUAGE PROGRAMS (8085 ONLY)                        | 15 Hrs |
|           | BCD arithmetic -Addition and subtraction two 8-bit and 16-bit         |        |
|           | numbersLargest and smallest numbers in a data set – Ascending order   |        |
|           | and descending order –Sum of a series of a 8-bit numbers – Sum of a   |        |
|           | series of multibute decimal numbers – Square root of a number – Block |        |
|           | movement of data Time delay. Square wave generator                    |        |
|           | novement of data Thile delay -Square-wave generator.                  |        |

| III | <b>PERIPHERAL DEVICES AND MICROPROCESSOR APPLICATIONS</b><br>Generation of control signals for memory and I/O devices - I/O ports<br>Programmable peripheral interface – Architecture of 8255A -Control<br>word—Programmable interrupt controller (8259) 8279- Key board<br>interfacing- Programmable counter- Intel 8253 -Architecture, control<br>word and operation – Block diagram and interfacing of analog to digital<br>converter (ADC 0800) – Digital to analog converter (DAC 0800)–<br>Stepper motor – Traffic control. | 15 Hrs |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IV  | MICROCONTROLLER 8051<br>Features of 8051– Architecture –Pin configuration –Memory<br>organization External data and program memory Counters and<br>timers – Serial data input/output– Interrupt structure – External<br>interrupts – Addressing modes Comparison between microprocessor<br>and microcontroller.                                                                                                                                                                                                                   | 15 Hrs |
| V   | <b>8051 INSTRUCTION SET AND PROGRAMMING</b><br>Instruction set – Data transfer, arithmetic and logical instructions –<br>Boolean variable manipulation instructions – Program and machine<br>control instructions – Simple programs – Addition and subtraction of<br>two 8-bit and 16-bit numbers – Division – Multiplication Largest<br>number in a set – Sum of a set of numbers.                                                                                                                                               | 15 Hrs |

- 1. 1.B.Ram, Fundamentals of Microprocessor and Microcomputers (DhanpatRaiPub., New Delhi,2006).
- 2. R. Gaonkar, Microprocessor Architecture, Programming and Applications with 8085

## **Reference Books:**

- 1. M.A. Mazidi, J.G. Mazidi and R.D. Mckinlay, The 8051 Microcontroller and Embbeded
- 2. Systems using Assembly and C (Dorling Kindersley, New Delhi, 2013).
- 3. A.P. Godse and D.A.Godse, Microprocessors and Microcontrollers (Technical Pub., Pune, 2008).

## Web-Resources:

- 1. <u>https://www.javatpoint.com/microprocessor-vs-microcontroller</u>
- 2. https://www.vssut.ac.in/lecture\_notes/lecture1423813120.pdf

### **Course Outcome:**

CO1: Write programs to run on 8085 microprocessor.

CO2: Understand and device techniques for faster execution of instruction, improve speed of operations.

CO3: Understand microprocessor and its advantage.

CO4: Describe the fundamental components of a C program e.g source file, header file, main function , functions and libraries.

CO5: Explain and apply fundamental syntax rules for identifies , declarations, expressions, statements and functions.

### Mapping of COs with POs & PSOs:

| CO/PO | РО |   |   | PSO |   |   |   |   |   |   |
|-------|----|---|---|-----|---|---|---|---|---|---|
|       | 1  | 2 | 3 | 4   | 5 | 1 | 2 | 3 | 4 | 5 |
| CO1   | S  | S | S | S   | S | S | S | S | S | S |
| CO2   | S  | S | S | S   | S | S | S | S | S | S |
| CO3   | S  | S | S | S   | S | S | S | S | S | S |
| CO4   | S  | М | S | S   | S | S | М | М | S | S |
| CO5   | S  | S | S | S   | S | S | S | S | S | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

| Course & Title       Elective Course I / DATA COMMUNICATION AN NETWORKS |                   | COMMUNICATION AND CO<br>NETWORKS | MPUTER |
|-------------------------------------------------------------------------|-------------------|----------------------------------|--------|
| Class                                                                   | I MSc Physics     | Semester                         | II     |
| Internal Marks -25                                                      | External Marks-75 | Total Marks: 100                 |        |

#### **Course Objectives**

- Become familiar with layered communication architectures (OSI and TCP/IP).
- Understand the client/server model and key application layer protocols.
- Learn sockets programming and how to implement client/server programs.
- Understand the concepts of reliable data transfer and how TCP implements these concepts.
- Know the principles of congestion control and trade-offs in fairness and efficiency.

| Cognitive | K-1 Acquire/Remember                                                                                                                                                                                                                                                                                                                                        |                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Level     | K-2 Understand                                                                                                                                                                                                                                                                                                                                              |                |
|           | K-3 Apply                                                                                                                                                                                                                                                                                                                                                   |                |
|           | K-4 Analyze                                                                                                                                                                                                                                                                                                                                                 |                |
|           | K-5 Evaluate                                                                                                                                                                                                                                                                                                                                                |                |
|           | K-6 Create                                                                                                                                                                                                                                                                                                                                                  |                |
| UNIT      | CONTENT                                                                                                                                                                                                                                                                                                                                                     | NO OF<br>HOURS |
| I         | Data transmission and encoding Concepts: Analog and Digital transmission, Transmission impairments-Transmission media-<br>Synchronous / Asynchronous transmission-Line configurations-<br>interfacing. Digital data digital signals-Variations of NRZ and bi-phase-<br>Digital data Analog signals-ASK, FSK, PSK, QPSK-Analog data digital signals-PCM, DM. | 15 Hrs         |
| II        | <ul> <li>Introduction and services - Error detection and correction - Multiple access protocols - LANs o Addressing &amp; ARP - Link virtualization o MPLS</li> <li>Data center networking - Web request processing - Data Link Control Flow control, Error control-HDLC, Multiplexing.</li> </ul>                                                          | 15 Hrs         |
| III       | Introduction to Computer Networks and the Physical Layer Introduction:<br>The uses of computer networks-Network hardware-Network software-<br>Reference models, Example of networks-Network standardization. The<br>physical layer: The theoretical basis for data communication-Guided                                                                     | 15 Hrs         |

|    | Transmission media-Wireless transmission.                                                                                                                                                                                                                                   |        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IV | Error detection and correction-Elementary data link protocols-Sliding<br>window protocols-Example of data link protocols-ETHERNET. The<br>network layer: Network layer design issues-Routing algorithms-<br>Congestion control algorithms Ethernet o Switches o VLANs o PPP | 15 Hrs |
| V  | The transport and the Application Layers The transport layer: Transport layer design issues-Transport protocols-Simple transport protocol-Internet transport protocols UDP, TCP. The application layer: Domain name system-Electronic mail-World Wide Web.                  | 15 Hrs |

- 1. Edition, 2008.
- 2. Andrew S. Tanenbaum, " Computer networks", Prentice-Hall of India, New Delhi, 4th edition 2005.
- 3. Behrouz Forouzan, "Introduction to Data Communication and Networking", Tata McGraw-Hill, 2000.

#### **Reference Books:**

- 1. Douglas E. Comer, "Internet working with TCP/IP-Volume-I", Prentice-Hall of India, 4th Edition, 2001.
- 2. Paub and Schilling, "Principles of Communication System", MacGraw Hill, 1986.
- 3. James F. Kurose and Keith W. Ross, "Computer Networking-A top down Approach Featuring the Internet", Pearson Education, Asia, 3rd Edition-2006.

## Web-Resources:

- 1. http://nptel.ac.in/courses/106105082/
- 2. http://www.networkworld.com/blogs

#### **Course Outcome:**

CO 1: Understand importance of data communication systems and fundamentals.

CO 2: Distinguish and relate various physical Medias, interfacing standards and adapters.

CO 3: Explain various flow control techniques.

CO 4: Analyze short range and long range wireless technologies

CO 5: Analyze various modulation technique in analog and digital careery system

# Mapping of COs with POs & PSOs:

| CO/PO | PO |   |   | PO PSO |   |   |   |   |   |   |
|-------|----|---|---|--------|---|---|---|---|---|---|
|       | 1  | 2 | 3 | 4      | 5 | 1 | 2 | 3 | 4 | 5 |
| C01   | S  | S | S | S      | М | S | S | S | S | S |
| CO2   | S  | М | S | S      | S | S | S | S | S | М |
| CO3   | S  | S | S | S      | М | S | S | S | S | S |
| CO4   | S  | М | S | S      | М | S | S | S | S | S |
| C05   | S  | S | S | S      | S | S | S | S | М | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

## M.Sc., Physics Entrepreneurship

| Course & Title     | ELECTIVE COURSE II /<br>PI | / NUMERICAL METHODS AN<br>ROGRAMMING | D C++ |
|--------------------|----------------------------|--------------------------------------|-------|
| Class              | I MSc Physics              | Semester                             | II    |
| Internal Marks -25 | External Marks-75          | Total Marks: 100                     |       |

| Cognitive  | <b>K-1</b> Acquire/Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Level      | <b>K-2</b> Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|            | K-3 Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|            | K-4 Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |
|            | K-5 Evaluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
|            | K-6 Create                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
| Course     | • To learn the necessarily of methods of least square for fitting a gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ph.                                |
| Objectives | • To learn the numerical methods of computing certain math                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ematical                           |
|            | quantities, construction and evaluation of a function and solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on of an                           |
|            | ordinary differential equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|            | • To Write C++ computer programming necessary for numerical sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nulation                           |
|            | of physical problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|            | • Know about the basis theory of errors, their analysis, estimat                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion with                           |
|            | examples of simple experiments in physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
|            | Learn to write C++ Program for all the methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| UNIT       | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOOR                               |
| 01111      | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO OF                              |
|            | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO OF<br>HOURS                     |
| I          | CURVE FITTING AND INTERPOLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO OF<br>HOURS<br>15 Hrs           |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO OF<br>HOURS<br>15 Hrs           |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit<br>Exponential and power-law fits.                                                                                                                                                                                                                                                                                                                                                                                                        | NO OF<br>HOURS<br>15 Hrs           |
| I          | <th>NO OF<br/>HOURS<br/>15 Hrs</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO OF<br>HOURS<br>15 Hrs           |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit<br>Exponential and power-law fits.<br>INTERPOLATION: Newton interpolation polynomial: Linear<br>interpolation, Higher-order polynomials and first-order divided                                                                                                                                                                                                                                                                           | NO OF<br>HOURS<br>15 Hrs           |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit<br>Exponential and power-law fits.<br>INTERPOLATION: Newton interpolation polynomial: Linear<br>interpolation, Higher-order polynomials and first-order divided<br>differences – GregoryNewton interpolation polynomials – Lagrange                                                                                                                                                                                                       | NO OF<br>HOURS<br>15 Hrs           |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit<br>Exponential and power-law fits.<br>INTERPOLATION: Newton interpolation polynomial: Linear<br>interpolation, Higher-order polynomials and first-order divided<br>differences – GregoryNewton interpolation polynomials – Lagrange<br>interpolation.                                                                                                                                                                                     | NO OF<br>HOURS<br>15 Hrs           |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit<br>Exponential and power-law fits.<br>INTERPOLATION: Newton interpolation polynomial: Linear<br>interpolation, Higher-order polynomials and first-order divided<br>differences – GregoryNewton interpolation polynomials – Lagrange<br>interpolation.                                                                                                                                                                                     | NO OF<br>HOURS<br>15 Hrs           |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit<br>Exponential and power-law fits.<br>INTERPOLATION: Newton interpolation polynomial: Linear<br>interpolation, Higher-order polynomials and first-order divided<br>differences – GregoryNewton interpolation polynomials – Lagrange<br>interpolation.<br>SOLUTIONS OF LINEAR AND NONLINEAR EQUATIONS<br>SIMULTANEOUS LINEAR EQUATIONS: Upper triangular form and back                                                                     | NO OF<br>HOURS<br>15 Hrs<br>15 Hrs |
| I          | CURVE FITTING AND INTERPOLATION<br>CURVE FITTING: Method of least-squares - Straight-line fit<br>Exponential and power-law fits.<br>INTERPOLATION: Newton interpolation polynomial: Linear<br>interpolation, Higher-order polynomials and first-order divided<br>differences – GregoryNewton interpolation polynomials – Lagrange<br>interpolation.<br>SOLUTIONS OF LINEAR AND NONLINEAR EQUATIONS<br>SIMULTANEOUS LINEAR EQUATIONS: Upper triangular form and back<br>substitution –Augmented matrix Gauss elimination method Iordan's | NO OF<br>HOURS<br>15 Hrs<br>15 Hrs |

|     | modification Inverse of a matrix by GaussJordan method.<br><b>ROOTS OF NONLINEAR EQUATIONS:</b> Bi-section method and Newton<br>Raphson method.                                                                                                                                                                                                                                                                                                                                                                     |        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| III | NUMERICAL INTEGRATION AND DIFFERENTIATION<br>NUMERICAL INTEGRATION: Trapezoidal and Simpson's 1/3 rules<br>Errors in the formulae Composite trapezoidal and Simpson's 1/3<br>rules -Simpson's 3/8 rules - Errors in the formulae.                                                                                                                                                                                                                                                                                   | 15 Hrs |
| IV  | PROGRAMMING IN C++<br>Constants and variables I/O operators and statements Header files -<br>- Main function – Conditional statements Switch statement Void<br>function Function program For, while and do-while statements<br>Break, continue and go to statements - Arrays.                                                                                                                                                                                                                                       | 15 Hrs |
| V   | <ul> <li>PROGRAMMING IN C++</li> <li>1. Least-squares curve fitting – Straight-line fit</li> <li>2. Least-squares curve fitting – Exponential fit</li> <li>3. Real roots of one-dimensional nonlinear equations Newton Raphson method</li> <li>4. Complex roots of one-dimensional nonlinear equations Newton Raphson method</li> <li>5. Interpolation – Lagrange method</li> <li>6. Numerical integration – Composite trapezoidal rule</li> <li>7. Numerical integration – Composite Simpson's 1/3 rule</li> </ul> | 15 Hrs |

- 1. J. R. Hubbard, Programming with C++ (McGraw-Hill, New Delhi, 2006).
- 2. E. Balagurusamy, Objected Oriented Programming in C++ (McGraw Hill, New Delhi,

#### **Reference Books:**

- 1. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation (New Age International, New Delhi, 1993).
- 2. J.H. Mathews, Numerical Methods for Mathematics, Science and Engineering (Prentice-Hall of India, New Delhi, 1998).

#### Web-Resources:

1. Fundamental of Numerical Methods and Data Analysis-G.Collins.pdf

### **Course Outcome:**

CO 1: To Equip them with sufficient Knowledge base of physics so that they do not find any difficulty pursuing higher Education

CO 2: Trained practical exposure which could equip to face the challenges in Physics.

CO 3: Understanding the Programming in C++ in constants and variables of the functions

CO 4: To Write C++ computer programming necessary for numerical integration to trapezoidal and simpson 's 1/3 rule

CO 5: Understand the various statements and Arrays.

### Mapping of COs with POs & PSOs:

|       | -  |   |   |   |   |     |   |   |   |   |
|-------|----|---|---|---|---|-----|---|---|---|---|
| CO/PO | РО |   |   |   |   | PSO |   |   |   |   |
|       | 1  | 2 | 3 | 4 | 5 | 1   | 2 | 3 | 4 | 5 |
| C01   | S  | S | S | S | S | S   | S | S | М | М |
| CO2   | S  | S | S | S | S | S   | S | S | S | S |
| CO3   | S  | S | S | S | S | S   | S | S | S | S |
| CO4   | S  | S | S | S | S | S   | S | S | S | S |
| CO5   | М  | М | S | S | S | S   | S | S | М | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

| Course & Title         | ELECTIVE COURSE II / COMPUTER ORGANIZATION |                  |    |  |  |  |  |
|------------------------|--------------------------------------------|------------------|----|--|--|--|--|
| Class                  | I MSc Physics                              | Semester         | II |  |  |  |  |
| Internal Marks -<br>25 | External Marks-75                          | Total Marks: 100 |    |  |  |  |  |

| Г         |                                                                                                       |             |
|-----------|-------------------------------------------------------------------------------------------------------|-------------|
| Cognitive | K-1 Acquire/Remember                                                                                  |             |
| Level     | K-2 Understand                                                                                        |             |
|           | K-3 Apply                                                                                             |             |
|           | K-4 Analyze                                                                                           |             |
|           | K-5 Evaluate                                                                                          |             |
|           | K-6 Create                                                                                            |             |
| Course    | • Understand the organization of a computer with its various p                                        | rocessing   |
| Objective | units, memory and peripherals.                                                                        |             |
| S         | <ul> <li>Understand the modern computer with its various processing up</li> </ul>                     | nits Also   |
| _         | the Performance measurement of the computer system                                                    | 11100 11100 |
|           | • In addition to this the memory management system.                                                   | stem of     |
|           | the computer                                                                                          |             |
|           | <ul> <li>They can analyze the performance of a computer using the per</li> </ul>                      | formanco    |
|           | • They can analyze the performance of a computer using the per-                                       | Iormance    |
|           | Understanding of different instruction types                                                          |             |
| UNIT      |                                                                                                       | NO OF       |
| UNII      | CONTENT                                                                                               |             |
|           |                                                                                                       | HOURS       |
| Ι         | Basic Structures of Computers                                                                         | 15 Hrs      |
|           | Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit,                                 |             |
|           | Output Unit, Control Unit, Basic Operational Concepts, Bus Structures.                                |             |
|           |                                                                                                       |             |
| II        | Machine Instructions & Programmes                                                                     | 15 Hrs      |
|           | Memory Locations and Addresses , Byte Addressability, Big Endian and                                  |             |
|           | Little Endian Assignments, Word Alignment, Accessing numbers,                                         |             |
|           | characters and character strings, Memory Operations, Instruction and                                  |             |
|           | Instruction sequencing, Register Transfer notation, Assembly Language                                 |             |
|           | notation, Basic instruction types, Instruction execution and straight line                            |             |
|           | sequencing, Branching, Condition codes, Addressing modes,                                             |             |
|           | Implementation of variables and constants, Indirection and pointers.                                  |             |
|           | Indexing and arrays, Relative addressing. Additional modes. Assembly                                  |             |
|           |                                                                                                       |             |
|           | Language. Assembler directives. Assembly and execution of programs                                    |             |
|           | Language, Assembler directives, Assembly and execution of programs,<br>Basic Input- Output Operations |             |

| III | <b>Basic Processing Unit</b><br>Some Fundamental Concepts, Register transfers, Performing an<br>Arithmetic or Logic operation, Fetching a word from memory, Storing a<br>word in memory, Execution of a complete Instruction, Branch<br>instructions, Multiple Bus Organization, Hardwired Control(basic block<br>diagram only), A complete processor, Basic organization of Micro<br>programmed Control Unit                                                                                                                                          | 15 Hrs |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IV  | Input Output Organization<br>Accessing I/O Devices, Interrupts, Interrupt Hardware, Enabling and<br>Disabling Interrupts, Handling Multiple Devices, Controlling Device<br>requests, Exceptions, Direct Memory Access, Bus arbitration, Buses,<br>Synchronous bus, Asynchronous bus, Interface Circuits, Parallel port<br>and Serial port (Basic concept only), Standard I/O Interfaces (Basic<br>concepts only), Peripheral Component Interconnect (PCI) Bus , SCSI<br>Bus( Basic concepts only), Universal Serial Bus (USB) (Basic concepts<br>only) | 15 Hrs |
| V   | <b>The Memory System</b><br>Some Basic Concepts, Semiconductor RAM Memories, Internal<br>Organization of memory chips, Static Memories, Asynchronous DRAMs,<br>Synchronous DRAMs, Structure of larger memories, Memory system<br>consideration, Rambus memory, Read-Only Memories- ROM, PROM,<br>EPROM, EEPROM, Flash Memory, Speed, Size and Cost, Cache Memories.                                                                                                                                                                                    | 15 Hrs |

- 1. Computer Organization, Carl Hamacher, zvonko Vranesic and Safwat Zaky, McGraw Hill, 5th edition
- 2. Advanced Computer Architecture (A practical approach ), Rajiv Chopra, S. Chand, Revised edition, reprint 2014, ISBN8121930774

## **Reference Books:**

- 1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 2. Computer architecture and organization , 4th edition , P Chakraborty , JAICO Publishers

## Web-Resources:

- 1. http://www.srmuniv.ac.in/downloads/computer\_architecture.pdf
- 2. <u>http://www.dauniv.ac.in/downloads/CArch\_PPTs/CompArchCh06L01PipeLine.</u> <u>pdf</u>
- 3. http://elearning.vtu.ac.in/06CS46.html

- 4. <u>http://nptel.ac.in/courses/Webcourse-contents/IIT</u>
  - %20Guwahati/comp\_org\_arc/web/

#### **Course Outcome:**

CO 1: Recognize and explain the functional units of computers

CO 2: Describe assembly languages and machine instructions by analyzing how the data is stored and fetched from memory.

CO 3: Explain the execution of complete instruction and bus organizations.

CO 4: Identify various interrupt handling mechanism and buses.

CO 5: Differentiate between different types of memories.

### Mapping of COs with POs & PSOs:

| CO/PO | РО |   |   |   |   | PSO |   |   |   |   |
|-------|----|---|---|---|---|-----|---|---|---|---|
|       | 1  | 2 | 3 | 4 | 5 | 1   | 2 | 3 | 4 | 5 |
| CO1   | S  | S | S | М | S | S   | S | S | S | S |
| CO2   | S  | S | М | S | S | S   | S | S | S | S |
| CO3   | S  | S | S | М | S | S   | S | S | S | S |
| CO4   | S  | S | S | М | S | S   | S | М | S | S |
| CO5   | S  | S | М | М | S | S   | S | М | S | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

| Core Course &      | ELECTIVE COURSE-V                |                  |    |  |  |  |  |
|--------------------|----------------------------------|------------------|----|--|--|--|--|
| Title              | ADVANCED EXPERIMENTAL TECHNIQUES |                  |    |  |  |  |  |
|                    |                                  |                  |    |  |  |  |  |
| Class              | II MSc Physics                   | Semester         | IV |  |  |  |  |
| Internal Marks -25 | External Marks-75                | Total Marks: 100 |    |  |  |  |  |

| Cognitive  | K-1 Acquire/Remember                                                 |              |
|------------|----------------------------------------------------------------------|--------------|
| Level      | K-2 Understand                                                       |              |
|            | K-3 Apply                                                            |              |
|            | K-4 Analyze                                                          |              |
|            | K-5 Evaluate                                                         |              |
|            | K-6 Create                                                           |              |
| Course     | • To make the students understand the principles.                    |              |
| Objectives | • To involve in measuring devices, error measurements, the s         | standards of |
|            | measurements.                                                        |              |
|            | • To understand performance characteristics of an instrumenta        | tion system, |
|            | transducers, and vibration sensing devices.                          | <b>,</b>     |
|            | • To apply the techniques.                                           |              |
| UNIT       | CONTENT                                                              | NO OF        |
|            |                                                                      | HOURS        |
| T          |                                                                      |              |
| I          | X ray diffraction methods                                            | 15 Hrs       |
|            | sterographic projection - wull net – measurement of angle between    |              |
|            | diffraction under non ideal conditions. Scherrer formula for         |              |
|            | astimation of articlesize Laue method rotating crustal method        |              |
|            | estimation ofparticlesize. Late method, rotating crystal method –    |              |
|            | powder method-scherrer camera.                                       |              |
| II         | Spectroscopic techniques                                             | 15 Hrs       |
|            | Mass spectroscopy and Xray emission spectroscopy (principle and      |              |
|            | limitations), Quadrupole mass spectrometer- X ray photo electron     |              |
|            | spectroscopy (XPS), Auger electron spectroscopy (AES) – laser        |              |
|            | Raman spectroscopy – Fourier transform infrared spectroscopy.        |              |
| III        | Flectron heam techniques                                             | 15 Hrc       |
|            | Scanning electron microscony (SEM) Transmission electron             | 10 111 3     |
|            | microscopy (TEM) Ruther ford back scattering spectrometry (RRS)      |              |
|            | meroscopy (Thin), Ruther for a such seattering speet officing (RDS), |              |
|            | Ion beam techniques. Field ion microscopy (IM)                       |              |
|            | Ion beam techniques, Field ion microscopy (IM)                       |              |

| IV | <b>Optical techniques</b><br>Use of polarized light in the study of transparent materials –<br>polarized light microscopy – coloscopy –compensator techniques–<br>Babinet– Soleil compensator - Berek compensator. | 15 Hrs |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| V  | <b>Thermal analytical techniques</b><br>Differential thermal analysis – Instrumentation – differential<br>scanning calorimetry – thermo gravimetric analysis –<br>Instrumentation.                                 | 15 Hrs |

- Cullity BD, Elements of X ray diffraction Addison Wesley PublishingCo, 1967,3<sup>rd</sup> Edition.
- 2. Dieter K Schroder, *Semiconductor material and Characterization* John Wiley and sons inc, 1990, 2<sup>nd</sup> edition).
- 3. PruttonM ,Surface Physics,ClarendonPress,1975,2<sup>nd</sup> edition.
- 4. M.Woolfson,An IntroductiontoXrayCrystallography,CambridgeCambridge,1970,2<sup>nd</sup> edition.

### **Reference Books:**

- Cullity BD, Elements of X ray diffraction Addison Wesley PublishingCo, 1967,3<sup>rd</sup> Edition.
- 2. Dieter K Schroder, *Semiconductor material and Characterization* John Wiley and sons inc, 1990, 2<sup>nd</sup> edition).
- 3. PruttonM ,Surface Physics,ClarendonPress,1975,2<sup>nd</sup> edition.
- 4. M.Woolfson,An IntroductiontoXrayCrystallography,CambridgeCambridge,1970,2<sup>nd</sup> edition.

## Web-Resources:

- 1. <u>https://www.amazon.in/Advanced-Experimental-Techniques-Physics-</u> <u>Prakashan/dp/B07YCM821T</u>
- 2. https://eng.ua.edu/tag/advanced-experimental-techniques/

#### **Course Outcome:**

CO 1: The students are expected to learn the art and science of carrying out experimental research.

CO 2: At the end of the course a student should be able to design and carry out an experiment on his/her own.

CO 3: This is an important skill which anybody wanting to do experimental research is expected to possess.

CO 4: To learn the art and science of carrying out experimental research

CO 5: Techniques of curve fitting and parameter estimation

## Mapping of COs with POs & PSOs:

| CO/PO | РО |   |   |   |   | PSO |   |   |   |   |
|-------|----|---|---|---|---|-----|---|---|---|---|
|       | 1  | 2 | 3 | 4 | 5 | 1   | 2 | 3 | 4 | 5 |
| C01   | S  | S | S | S | S | S   | S | S | S | S |
| CO2   | S  | S | S | М | М | S   | S | S | S | S |
| CO3   | S  | S | М | S | S | S   | S | S | S | S |
| CO4   | S  | S | S | S | S | S   | S | М | S | S |
| CO5   | S  | S | М | S | М | S   | S | S | S | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

| Core Course &      | ELECTIVE COURSE-V                       |                  |  |  |  |  |  |  |
|--------------------|-----------------------------------------|------------------|--|--|--|--|--|--|
| Title              | BASICS OF COMPUTATIONAL NANOELECTRONICS |                  |  |  |  |  |  |  |
| Class              | II Msc physics                          | Semester IV      |  |  |  |  |  |  |
| Internal Marks -25 | External Marks-75                       | Total Marks: 100 |  |  |  |  |  |  |

| Cognitive  | K-1 Acquire/Remember                                                   |          |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------|----------|--|--|--|--|--|--|
| Level      | K-2 Understand                                                         |          |  |  |  |  |  |  |
|            | K-3 Apply                                                              |          |  |  |  |  |  |  |
|            | K-4 Analyze                                                            |          |  |  |  |  |  |  |
|            | K-5 Evaluate                                                           |          |  |  |  |  |  |  |
|            | K-6 Create                                                             |          |  |  |  |  |  |  |
| Course     | • The purpose of this course is to introduce the physical              | concepts |  |  |  |  |  |  |
| Objectives | underlying the phenomena in the mesoscopic systems.                    |          |  |  |  |  |  |  |
|            | • The aim of the course is, how to model and solve nanojunctions.      |          |  |  |  |  |  |  |
|            | • In this course, students will learn some new advanced topics         | such as: |  |  |  |  |  |  |
|            | quantization of electrical conductance, Coulomb Blockade,              | quantum  |  |  |  |  |  |  |
|            | capacitance and etc.                                                   |          |  |  |  |  |  |  |
|            |                                                                        |          |  |  |  |  |  |  |
| UNIT       | CONTENT                                                                | NO OF    |  |  |  |  |  |  |
|            |                                                                        | HOURS    |  |  |  |  |  |  |
| Т          | Two Key Concepts Why Electrons Flow Conductance Formula Ballistic      | 15 Hrs   |  |  |  |  |  |  |
| -          | Conductance Diffusive Conductance Connecting Ballistic to Diffusive    |          |  |  |  |  |  |  |
|            | Drude Formula, Characteristic Length Scale, Transport Regime.          |          |  |  |  |  |  |  |
|            |                                                                        |          |  |  |  |  |  |  |
| II         | Density of States, Number of Modes, Electron Density, Conductivity vs. | 15 Hrs   |  |  |  |  |  |  |
|            | Electron Density, Quantum Capacitance, Nanotransistors, What and       |          |  |  |  |  |  |  |
|            | Where is the Voltage, Spin Voltage, Current from QuasiFermi Levels,    |          |  |  |  |  |  |  |
|            | Electrostatic Potential                                                |          |  |  |  |  |  |  |
| III        | What a Probe Measures, Boltzmann Equation, Semiclassical Model,        | 15 Hrs   |  |  |  |  |  |  |
|            | Quantum Model, Landauer Formulas, NEGF Equations, Self-Energy,         |          |  |  |  |  |  |  |
|            | Surface Green's Function, Current Operator, Scattering Theory,         |          |  |  |  |  |  |  |
|            | Transmission, Rate Equations.                                          |          |  |  |  |  |  |  |
|            |                                                                        | 4 5 11   |  |  |  |  |  |  |
| IV         | Spin Transport, Vectors and Spinors, Spin-Orbit Coupling, Spin         | 15 Hrs   |  |  |  |  |  |  |
|            | Hamiltonian, Spin Density/Current, Seebeck Coefficient, heat Current,  |          |  |  |  |  |  |  |
|            | Second Law, Entropy, Fuel value of information                         |          |  |  |  |  |  |  |
| V          | Application of Nanomaterials Molecular Electronics and                 | 15 Hrs   |  |  |  |  |  |  |

# Nanoelectronics – Nanobots- Biological Applications – Quantum Devices – Nanomechanics - Carbon Nanotube – Photonics- Nano structures as single electron transistor – principle and design.

**Text Books:** 

- 1. Lessons from Nanoelectronics: A New Perspective on Transport: Volume 1 & 2 by Supriyo Datta (World Scientific) G:
- 2. Theory of Quantum Transport at Nanoscale: An Introduction by Dmitry A Ryndyk (Springer) H:
- 3. Quantum Transport: Introduction to Nanoscience by Yuli V. Nazarov and Yaroslav M. Blanter (CAMBRIDGE)

## **Reference Books:**

- 1. S.P. Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University Press, 1980.
- 2. W.Gaddand, D.Brenner, S.Lysherski and G.J.Infrate(Eds.), Handbook of NanoScience, Engg. and Technology, CRC Press, 2002. ∖

## **Web-Resources:**

- 1. https://www.ecc.itu.edu.tr/index.php/ELE 523E
- 2. https://www.nature.com/subjects/computational-nanotechnology

## **Course Outcome:**

CO 1: Discuss the types of nanotechnology, molecular technology and the preparation of nano materials.

CO 2: Explains the fundamental of the devices such as logic devices, field effect devices, and spintronics.

CO 3: Describe the concepts of silicon MOSFET and Quantum Transport Devices.

CO 4: Summarize the types, synthesis, interconnects and applications of carbon nano tubes.

CO 5: Explain the concepts, functions, fabrications and applications of molecular electronics

| Mapping of COs with POs & PSOs: |   |   |    |   |   |     |   |   |   |   |
|---------------------------------|---|---|----|---|---|-----|---|---|---|---|
| CO/PO                           |   |   | РО |   |   | PSO |   |   |   |   |
|                                 | 1 | 2 | 3  | 4 | 5 | 1   | 2 | 3 | 4 | 5 |
| C01                             | S | S | S  | S | М | S   | S | М | S | S |
| CO2                             | S | S | М  | М | S | S   | S | S | S | S |
| CO3                             | S | S | М  | М | S | S   | S | М | S | S |
| CO4                             | S | S | М  | М | S | S   | S | S | S | S |
| CO5                             | S | S | S  | S | S | S   | S | S | S | S |

**S** – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

## M.Sc., Physics Skill development

| Core Course &      | CORE COURSE IV / METHOD OF SPECTROSCOPY |                  |   |  |  |  |  |
|--------------------|-----------------------------------------|------------------|---|--|--|--|--|
| Title              |                                         |                  |   |  |  |  |  |
| Class              | I MSc Physics                           | Semester         | Ι |  |  |  |  |
| Internal Marks -25 | External Marks-75                       | Total Marks: 100 |   |  |  |  |  |

| Cognitiv | K-1 Acquire/Remember                                                         |          |  |  |  |  |  |
|----------|------------------------------------------------------------------------------|----------|--|--|--|--|--|
| e Level  | K-2 Understand                                                               |          |  |  |  |  |  |
|          | K-3 Apply                                                                    |          |  |  |  |  |  |
|          | K-4 Analyze                                                                  |          |  |  |  |  |  |
|          | K-5 Evaluate                                                                 |          |  |  |  |  |  |
|          | K-6 Create                                                                   |          |  |  |  |  |  |
| Course   | • To applications in the determinations of atomic structure,                 | chemical |  |  |  |  |  |
| Objecti  | composition and Physical properties of materials.                            |          |  |  |  |  |  |
| ves      | • To explain the absorption and emission spectra.                            |          |  |  |  |  |  |
|          | • To justify the difference in intensity between stokes and antistokes line. |          |  |  |  |  |  |
|          | Explain NMR Spectroscopy knows how nuclear spins are affect                  | ted by a |  |  |  |  |  |
|          | magnetic field.                                                              |          |  |  |  |  |  |
|          | To study Frank Condon principle.                                             |          |  |  |  |  |  |
| UNIT     | CONTENT                                                                      | NO OF    |  |  |  |  |  |
|          |                                                                              | HOURS    |  |  |  |  |  |
| Unit I   | ATOMIC SPECTROSCOPY                                                          | 18 Hrs   |  |  |  |  |  |
|          | Hyperfine structure – Zeeman and Paschen—Back effect of one and two          |          |  |  |  |  |  |
|          | electron systems – Selection rules – Stark effect.                           |          |  |  |  |  |  |
|          | MICROWAVE AND INFRARED ABSORPTION SPECTROSCOPIES                             |          |  |  |  |  |  |
|          | MICROWAVE SPECTROSCOPY: Rotation of diatomic molecules -                     |          |  |  |  |  |  |
|          | Rotational spectra of polyatomic molecules - Spectrum of non rigid           |          |  |  |  |  |  |
|          | rotator – Experimental technique – Polyatomic molecules – Linear,            |          |  |  |  |  |  |
|          | symmetric top and asymmetric top molecules.                                  |          |  |  |  |  |  |
| II       | <b>INFRARED ABSORPTION SPECTROSCOPY:</b> Vibrating diatomic molecule         | 18 Hrs   |  |  |  |  |  |
|          | -Anharmonic oscillator – Diatomic vibrating rotator – Vibration-rotation     |          |  |  |  |  |  |
|          | spectrum of carbon monoxide – Influence of rotation on the spectrum of       |          |  |  |  |  |  |
|          | polyatomic molecules – Linear and symmetric top molecules.                   |          |  |  |  |  |  |
| III      | RAMAN SPECTROSCOPY                                                           | 18 Hrs   |  |  |  |  |  |

|    | Quantum theory of Raman effect –Pure rotational Raman spectra – Linear<br>molecules – Symmetric top molecules – Vibration Raman spectra –<br>Rotational fine structure – Structural determination – Raman spectra –<br>Instrumentation – Raman effect and molecular structure – Raman activity<br>of molecular vibrations.                                                                                                                                          |         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| IV | NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY<br>Basic principles –Quantum theory of NMR- Bloch equations and solutions<br>– Shielding and deshielding effects – Chemical shift – Spin lattice and spin-<br>spin relaxation– Coupling constants – Experimental technique – Double<br>coil method – Structural diagnosis and hydrogen bonding.                                                                                                                             | 18 Hrs  |
| V  | <ul> <li>ELECTRONIC AND ESR SPECTROSCOPY</li> <li>ELECTRONIC SPECTROSCOPY OF MOLECULES: Electronic spectra of diatomic molecules The Franck-Condon principle – Dissociation energy and dissociation products – Rotational fine structure of electronic vibration transitions.</li> <li>ESR: Theory of ESR – Resonance conditions – Experimental study – ESR spectrometer – Crystalline solids and free radicals in solution – Determination of g factor.</li> </ul> | 18 Hrs  |
| VI | <ul> <li>Infrared (IR) Spectroscopy</li> <li>Ultraviolet-Visible (UV/Vis) Spectroscopy</li> <li>Nuclear Magnetic Resonance (NMR) Spectroscopy</li> <li>Raman Spectroscopy</li> <li>X-Ray Spectroscopy.</li> </ul>                                                                                                                                                                                                                                                   | Project |

- 1. Gupta kumar Sharma Elements of Spectroscopy -10th Edition
- 2. C.N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw Hill, New York, 1981).

## **Reference Books:**

- 1. J. Michael Hollas, Modern Spectroscopy (Wiley India, New Delhi, 2004).
- 2. B.P. Straughan and S. Walker, Spectroscopy Volumes I--III (Chapman and Hall, New York, 1976).

## Web-Resources:

- 1. https://guides.lib.unc.edu/spectroscopy/general.
- 2. https://guides.lib.unc.edu/spectroscopy/general.
- 3. ElectronMicroscopy-PrinciplesandFundamentals-S.Amenlinckx,etal.,(Wiley-VCH,1997) WW.pdf

### **Course Outcome:**

CO 1: Explain what it means to use Spectroscopic methods for qualitative and quantitative analysis.

CO 2: Compare and contrast of atomic and molecular spectra.

CO 3: Explain the difference between stokes and anti-stokes line in a Raman spectrum.

CO 4: Understanding of Quantum theory and NMR spectroscopy.

CO 5: The probability of transition between vibration levels of two electronic states determined by Frank-Condon principle.

## Mapping of COs with POs & PSOs:

| CO/PO | РО |   |   |   |   | PSO |   |   |   |   |
|-------|----|---|---|---|---|-----|---|---|---|---|
|       | 1  | 2 | 3 | 4 | 5 | 1   | 2 | 3 | 4 | 5 |
| CO1   | S  | S | S | S | S | S   | М | S | S | S |
| CO2   | S  | S | S | S | S | S   | М | М | S | S |
| CO3   | S  | М | М | S | S | S   | S | S | S | S |
| CO4   | S  | S | S | S | S | S   | S | S | S | S |
| CO5   | S  | S | Μ | S | S | S   | S | S | Μ | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

| Course & Title     | TIVE COURSE-III<br>erials and Applications | OURSE-III<br>nd Applications |     |  |
|--------------------|--------------------------------------------|------------------------------|-----|--|
| Class              | II MSc Physics                             | Semester                     | III |  |
| Internal Marks -25 | External Marks-75                          | Total Marks: 100             |     |  |

| Cognitive  | K-1 Acquire/Remember                                                         |           |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Level      | <b>K-2</b> Understand                                                        |           |  |  |  |  |  |  |
|            | K-3 Apply                                                                    |           |  |  |  |  |  |  |
|            | K-4 Analyze                                                                  |           |  |  |  |  |  |  |
|            | K-5 Evaluate                                                                 |           |  |  |  |  |  |  |
|            | K-6 Create                                                                   |           |  |  |  |  |  |  |
| Course     | • To understand the theoretical concepts involved in crystal growth a        | nd thin   |  |  |  |  |  |  |
| Objectives | film sciences and to learn the basic characterizing techniques of materials. |           |  |  |  |  |  |  |
|            | • To foundational knowledge of the Nanoscience and related fields.           |           |  |  |  |  |  |  |
|            | • To make the students acquire an understanding the Nanoscience and          |           |  |  |  |  |  |  |
|            | Applications                                                                 |           |  |  |  |  |  |  |
|            | • To help them understand in broad outline of Nanoscience and                |           |  |  |  |  |  |  |
|            | Nanotechnology.                                                              |           |  |  |  |  |  |  |
|            | • For Nanomaterials understood the principles and Character                  | erization |  |  |  |  |  |  |
|            | Techniques                                                                   |           |  |  |  |  |  |  |
|            | Understand and improved the application of Nanotechnology                    |           |  |  |  |  |  |  |
|            |                                                                              |           |  |  |  |  |  |  |
| UNIT       | CONTENT                                                                      | NO OF     |  |  |  |  |  |  |
|            |                                                                              | HOURS     |  |  |  |  |  |  |
|            |                                                                              |           |  |  |  |  |  |  |
| I          | Back ground of Nano technology                                               | 15 Hrs    |  |  |  |  |  |  |
|            | Scientific revolution-Emergence of Nano technology, Challenges in Nano       |           |  |  |  |  |  |  |
|            | technology -Periodic Table, Atomic structures, Molecules and Phases-         |           |  |  |  |  |  |  |
|            | Energy, Atomic size, surfaces and dimensional space                          |           |  |  |  |  |  |  |
| II         | Prenaration of Nano Materials                                                | 15 Hrs    |  |  |  |  |  |  |
|            | Nano Material-Preparation-Ton down-hall milling Nano lithography-            | 15 11 5   |  |  |  |  |  |  |
|            | Bottom up. Self Assembly -Sol gel -Hydro thermal method-Polyol Process       |           |  |  |  |  |  |  |
|            | bettern up, ben histernory borger righte thermal method roryof rideess       |           |  |  |  |  |  |  |
| III        | carbon nano structures                                                       | 15 Hrs    |  |  |  |  |  |  |
|            | Carbon molecules and carbon bond C60: Discovery and structure of             |           |  |  |  |  |  |  |
|            | C60 and its crystal Superconductivity in C60 Carbon nanotubes:               |           |  |  |  |  |  |  |
|            |                                                                              |           |  |  |  |  |  |  |

|    | Mechanical properties Applications (fuel cells, chemical sensors, catalysts).                                                                                                                                                                                                                            |        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IV | <b>Characterization of Nanomaterials</b><br>Principles, experimental set-up, procedure and utility of scanning<br>electron microscopy (SEM), transmission electron microscopy (TEM),<br>scanning tunneling microscope (STM) and scanning probe microscopy<br>(SPM).                                      | 15 Hrs |
| V  | <b>Applications</b><br>Molecular electronics and nanoelectronics – Nanorobots Biological<br>applications of nanoparticles - Catalysis by gold nanoparticles – Band-<br>gap engineered quantum devices Nanomechanics CNT emitters –<br>Photoelectrochemical cells Photonic crystals – Plasmon waveguides. | 15 Hrs |

- 1. Manasi Karkare, Nano Technology Fundamentals and App1ications.
- 2. K. International Publishing House Limited.
- 3. Charles P. Poole JR and Frank Owens."Introduction to Nanotechnology" Wiley, 2003.
- 4. B.B. Laud, Non Linear Optics, 2<sup>nd</sup> Edn. New Age International (P) Limited. Delhi, 1991.

#### **Reference Books:**

e Books:

- 1. RobertW.Boyd, Non Linear Optics, 2ndEdn.AcademicPress,Newyork,2003.
- 2. K.Ravichandran, K.Swaminathan,B.SakthivelC.Pavidoss Introduction to Characterization of Nano Material and Thin Films(Publication JAZYM Publication)

#### **Course Outcome:**

CO 1: Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment

CO 2: Apply their learned knowledge to develop Nanomaterial's.

CO 3: Choose appropriate synthesis technique to synthesize quantum nanostructures of desired size, shape and surface properties.

CO 4: Appreciate enhanced sensitivity of nanomaterial based materials and their novel applications in industry.

CO 5: Understand the synthesis of nanomaterial and their application and the impact of nanomaterial on environment

## Mapping of COs with POs & PSOs:

| CO/PO | РО |   |   |   |   | PSO |   |   |   |   |
|-------|----|---|---|---|---|-----|---|---|---|---|
|       | 1  | 2 | 3 | 4 | 5 | 1   | 2 | 3 | 4 | 5 |
| C01   | S  | S | S | S | S | S   | S | S | S | S |
| CO2   | S  | S | S | М | М | S   | S | S | S | S |
| CO3   | S  | S | М | S | S | S   | S | S | S | S |
| CO4   | S  | S | S | S | S | S   | S | S | S | S |
| CO5   | S  | S | S | S | S | S   | S | S | S | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

| Course & Title     | ELECTIVE COURSE-III |                  |     |  |  |  |  |
|--------------------|---------------------|------------------|-----|--|--|--|--|
|                    | / CRYSTAL PHYSICS   |                  |     |  |  |  |  |
| Class              | II M.Sc Physics     | Semester         | III |  |  |  |  |
| Internal Marks -25 | External Marks-75   | Total Marks: 100 |     |  |  |  |  |

| <b>A 1 1</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Cognitive    | K-1 Acquire/Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| Level        | K-2 Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
|              | K-3 Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
|              | K-4 Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
|              | K-5 Evaluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|              | K-6 Create                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
| Course       | • To provide a qualitative idea on the fundamentals of growing crys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | stals and                 |
| Objectives   | characterizing the grown samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
|              | • This paper will serve as an eye opener for students keen in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | research                  |
|              | activities particularly in experimental physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|              | • To know the principles in the method involved in the growth of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f crystal.                |
|              | know the principles the advantage and the disadvantages differ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ent thin                  |
|              | film deposition method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
|              | <ul> <li>To understanding the theories involve in crystal growth nu</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lcleation                 |
|              | process and solution, melt and vapour growth techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
|              | To learn the importance of different thin films and coatings for a variety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|              | industrial applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| UNIT         | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO OF                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HOURS                     |
| I            | NUCLEATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOURS                     |
| I            | <b>NUCLEATION</b><br>Introduction-kinds of nucleation-equilibrium stability and Meta stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HOURS<br>15 Hrs           |
| I            | <b>NUCLEATION</b><br>Introduction-kinds of nucleation-equilibrium stability and Meta stable state-classical theory of nucleation-effect of soluble impurities on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOURS<br>15 Hrs           |
| I            | <b>NUCLEATION</b><br>Introduction-kinds of nucleation-equilibrium stability and Meta stable<br>state-classical theory of nucleation-effect of soluble impurities on<br>nucleation-determination of solubility-methods of induction period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOURS<br>15 Hrs           |
| I            | <b>NUCLEATION</b><br>Introduction-kinds of nucleation-equilibrium stability and Meta stable<br>state-classical theory of nucleation-effect of soluble impurities on<br>nucleation-determination of solubility-methods of induction period<br>measurements-desupersaturation-steady state nucleation rate-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOURS<br>15 Hrs           |
| Ι            | <b>NUCLEATION</b><br>Introduction-kinds of nucleation-equilibrium stability and Meta stable state-classical theory of nucleation-effect of soluble impurities on nucleation-determination of solubility-methods of induction period measurements-desupersaturation-steady state nucleation rate-nucleation parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HOURS<br>15 Hrs           |
| I            | <b>NUCLEATION</b><br>Introduction-kinds of nucleation-equilibrium stability and Meta stable state-classical theory of nucleation-effect of soluble impurities on nucleation-determination of solubility-methods of induction period measurements-desupersaturation-steady state nucleation rate-nucleation parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HOURS<br>15 Hrs           |
| I            | NUCLEATION         Introduction-kinds of nucleation-equilibrium stability and Meta stable         state-classical theory of nucleation-effect of soluble impurities on         nucleation-determination of solubility-methods of induction period         measurements-desupersaturation-steady         state         nucleation parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOURS<br>15 Hrs<br>15 Hrs |
| I            | NUCLEATIONIntroduction-kinds of nucleation-equilibrium stability and Meta stablestate-classical theory of nucleation-effect of soluble impurities onnucleation-determination of solubility-methods of induction periodmeasurements-desupersaturation-steadystatenucleation parameters.SOLUTION AND GEL GROWTH TECHNIQUESLow temperature solution growth-slow cooling methods-temperature                                                                                                                                                                                                                                                                                                                                                                                                    | HOURS<br>15 Hrs<br>15 Hrs |
| I            | NUCLEATIONIntroduction-kinds of nucleation-equilibrium stability and Meta stable<br>state-classical theory of nucleation-effect of soluble impurities on<br>nucleation-determination of solubility-methods of induction period<br>measurements-desupersaturation-steady state nucleation rate-<br>nucleation parameters.SOLUTION AND GEL GROWTH TECHNIQUES<br>Low temperature solution growth-slow cooling methods-temperature<br>gradient method-criteria for optimizing solution growth parameters-<br>basis apparatus for solution growth. Col growth structure of silica gold                                                                                                                                                                                                           | HOURS<br>15 Hrs<br>15 Hrs |
| I            | NUCLEATIONIntroduction-kinds of nucleation-equilibrium stability and Meta stablestate-classical theory of nucleation-effect of soluble impurities onnucleation-determination of solubility-methods of induction periodmeasurements-desupersaturation-steadystatenucleation parameters.SOLUTION AND GEL GROWTH TECHNIQUESLow temperature solution growth-slow cooling methods-temperaturegradient method-criteria for optimizing solution growth parameters-basic apparatus for solution growth. Gel growth-structure of silica gelandandgrallingmochanism-nucleationcontrolmethod                                                                                                                                                                                                           | HOURS<br>15 Hrs<br>15 Hrs |
| I            | NUCLEATIONIntroduction-kinds of nucleation-equilibrium stability and Meta stable<br>state-classical theory of nucleation-effect of soluble impurities on<br>nucleation-determination of solubility-methods of induction period<br>measurements-desupersaturation-steady state nucleation rate-<br>nucleation parameters.SOLUTION AND GEL GROWTH TECHNIQUES<br>Low temperature solution growth-slow cooling methods-temperature<br>gradient method-criteria for optimizing solution growth parameters-<br>basic apparatus for solution growth. Gel growth-structure of silica gel<br>and gelling mechanism-nucleation control-merits of gel method-<br>experimental methods- chemical reaction                                                                                               | HOURS<br>15 Hrs<br>15 Hrs |
| I            | NUCLEATIONIntroduction-kinds of nucleation-equilibrium stability and Meta stable<br>state-classical theory of nucleation-effect of soluble impurities on<br>nucleation-determination of solubility-methods of induction period<br>measurements-desupersaturation-steady state nucleation rate-<br>nucleation parameters.SOLUTION AND GEL GROWTH TECHNIQUES<br>Low temperature solution growth-slow cooling methods-temperature<br>gradient method-criteria for optimizing solution growth parameters-<br>basic apparatus for solution growth. Gel growth-structure of silica gel<br>and gelling mechanism-nucleation control-merits of gel method-<br>experimental methods- chemical reaction method-chemical reduction<br>method-complex de complex method-solubility reduction method-col | HOURS<br>15 Hrs<br>15 Hrs |

|     | gel method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| III | HIGH TEMPERATURE AND OTHER TECHNIQUES OF GROWTH<br>Growth from melt-Bridgman, Czochralski, zone melting, Verneuil<br>techniques-physical vapor deposition-flux growth-chemical vapor<br>deposition chemical vapor transport-hydrothermal growth- epitaxial<br>growth                                                                                                                                                                                                                              | 15 Hrs |
| IV  | OPTICAL STUDIES<br>Atomic absorption spectroscopy-UV-Visible-NIR spectroscopy-<br>Experimental set ups for Fourier Transform Infrared analysis, FT-<br>Raman vibrational spectroscopy and NMR Illustrations with selected<br>crystals-Nonlinear optical phenomenon (qualitative)-Kurtz powder SHG<br>method-photoconductivity and schematic set up for measurements-<br>negative photoconductivity.                                                                                               | 15 Hrs |
| V   | <b>CRYSTAL CHARACTERIZATION</b><br>Thermal analysis-methods of thermal analysis-thermogravimetric<br>analysis (TGA)-Differential thermal analysis (DTA)-Differential<br>Scanning Calorimetry (DSC)-Mechanical studies-methods of hardness<br>testing (qualitative)-Vickers hardness testing-correlation of<br>microhardness with other properties-estimation of hardness number<br>and work hardening coefficient (n)-dielectric studies-dielectric constant<br>and dielectric loss measurements. | 15 Hrs |

- 1. Brice J. C. (1986), 'Crystal Growth Process', John Wiley and Sons, New York.
- 2. Brice J.C. (1973), 'The growth of crystals from liquids', North Holland publishing company, Amsterdam.
- 3. Buckley H.E. (1951), 'Crystal Growth', John Wiley and Sons, New York.
- 4. Pamplin B.R. (1980), 'Crystal Growth', Pergman Press, London.
- 5. Henisch H.K. (1988), 'Crystals in gels and Liesegang rings', Cambridge Univ. Press. USA

## **Reference Books:**

- 1. R.T. Sane and Jagdish K Ghadge 'Thermal Analysis Theory and applications' Quest Publications 1997
- 2. V G Dmitriev, G.G. Gurzadyan, D.N. Nikigosyan; 'Handbook of Nonlinear optical crystals' Springer- Verlag 1991
- 3. Joshi V.N. (1990), 'Photoconductivity', Marcel Dekker, New York.

4. Santhanaraghavan P. and Ramasamy P. Crystal growth Process and Methods, (2000) KRU Publications, Kumbakonam.

### **Course Outcome:**

CO 1: Students will learn about the fundamentals of

CO 2: Nucleation mechanism and different kinds of nucleation.

CO 3: To learn about important crystal growth technique like Bridgeman, czochralski (pulling method), solution growth and hydrothermal methods, physical and chemical vapor transport.

CO 4: To understand with various techniques involved in crystal growth.

CO 5: To determine various theoretical parameters.

## Mapping of COs with POs & PSOs:

| CO/PO | РО |   |   |   |   | PSO |   |   |   |   |
|-------|----|---|---|---|---|-----|---|---|---|---|
|       | 1  | 2 | 3 | 4 | 5 | 1   | 2 | 3 | 4 | 5 |
| CO1   | S  | S | S | S | S | S   | S | S | S | S |
| CO2   | S  | S | М | М | М | S   | S | М | М | S |
| CO3   | S  | S | S | S | S | S   | S | S | S | S |
| CO4   | S  | S | S | S | S | S   | S | S | S | S |
| CO5   | S  | S | М | S | S | S   | М | S | S | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

| Course & Title     | ELECTIVE COURSE-IV      |                 |     |
|--------------------|-------------------------|-----------------|-----|
|                    | / COMMUNICATION PHYSICS |                 |     |
| Class              | II M.Sc Physics         | Semester        | III |
| Internal Marks -25 | External Marks-75       | Total Marks: 10 | 0   |

| Cognitive  | K-1 Acquire/Remember                                               |            |  |  |  |  |  |
|------------|--------------------------------------------------------------------|------------|--|--|--|--|--|
| Level      | K-2 Understand                                                     |            |  |  |  |  |  |
|            | K-3 Apply                                                          |            |  |  |  |  |  |
|            | K-4 Analyze                                                        |            |  |  |  |  |  |
|            | K-5 Evaluate                                                       |            |  |  |  |  |  |
|            | K-6 Create                                                         |            |  |  |  |  |  |
| Course     | • Students will demonstrate an understanding of multiple t         | heoretical |  |  |  |  |  |
| Objectives | perspectives and diverse intellectual traditions in communication. |            |  |  |  |  |  |
|            | • Students will demonstrate an understanding of importance of free |            |  |  |  |  |  |
|            | expression.                                                        |            |  |  |  |  |  |
|            | • Students will competency in human relational interaction.        |            |  |  |  |  |  |
|            | • To understanding of professional and ethical responsibility.     |            |  |  |  |  |  |
|            | An ability to communicate effectively                              |            |  |  |  |  |  |
| UNIT       | CONTENT                                                            | NO OF      |  |  |  |  |  |
|            |                                                                    | HOURS      |  |  |  |  |  |
| т          |                                                                    |            |  |  |  |  |  |
| 1          | Fundamental of EM Waysa Error Space propagation surface second     |            |  |  |  |  |  |
|            | propagation sky waves - Free space propagation –surface wave       |            |  |  |  |  |  |
|            | Tronosphere scatter propagation-structure of Atmosphere-Virtual    |            |  |  |  |  |  |
|            | height-MIIF-Lowest Usable Frequency-skin distance _Ontimum         |            |  |  |  |  |  |
|            | length-duct propagation                                            |            |  |  |  |  |  |
|            |                                                                    |            |  |  |  |  |  |
| II         | AMPLITUDE MODULATION                                               | 15 Hrs     |  |  |  |  |  |
|            | Introduction - Principle - AM - DSBSC, SSB, VSB Techniques-        |            |  |  |  |  |  |
|            | Generation of Amplitude modulation Signals-Generation of AM,       |            |  |  |  |  |  |
|            | DSBSC, SSB,VSB-Introduction to PAM, PCM, PPM, PWM                  |            |  |  |  |  |  |
| ш          | ANGLE MODULATION TECHNIQUES                                        | 15 Hrc     |  |  |  |  |  |
|            | Introduction of communication system. Flements of Communication    | 15 111 5   |  |  |  |  |  |
|            | System- Information-Transmitter Channel Receiver Nood for          |            |  |  |  |  |  |
|            | modulation-Theory of angle modulation tochniques (EM DM)           |            |  |  |  |  |  |
|            | Comparison of Phase modulation and Erequency modulation            |            |  |  |  |  |  |
|            | comparison of rhase mountation and rrequency mountation-           |            |  |  |  |  |  |
|            | Characteristics of DM and EM Practical issues in EM (Noise and     |            |  |  |  |  |  |

|    | Frequency Modulation )                                                                                                                                                                                                                                                                                                    |        |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
| IV | ANTENNAS<br>Electromagnetic Radiation- Elementary doublet-Current and Voltage<br>Distribution-Resonant Antennas, Radiation Pattern and length<br>contraction- Antenna Resonance- Band width, Beam width and<br>Polarization – Grounded and ungrounded Antennas-Effect of Height-<br>Feed Point-impedance Matching.        |        |  |  |  |  |
| V  | <b>ANTENNAS</b><br>Electromagnetic Radiation- Elementary doublet-Current and Voltage<br>Distribution-Resonant Antennas, Radiation Pattern and length<br>contraction- Antenna Resonance- Band width, Beam width and<br>Polarization – Grounded and ungrounded Antennas-Effect of Height-<br>Feed Point-impedance Matching. | 15 Hrs |  |  |  |  |

1. Kennedy and Davis, Electronic Communication System, Tata McGraw Hill,8th edition

#### Web-Resources:

- 1. www.math.ox.ac.uk
- 2. www.math.upenn.edu.
- 3. Mathematical Physics-A Modern Intro to its Foundations-
  - S.Hassani(Springer,1999)WW.pdf

#### **Course Outcome:**

CO 1: Demonstrate critical and innovative thinking

CO 2: Display competence in oral, written and visual communication.

CO 3: Show an understanding of opportunities in the field of communication.

CO 4: Students will demonstrate an understanding of the impact of physics and science on society

CO 5: Identify the applications in communications.

### Mapping of COs with POs & PSOs:

| CO/PO | PO |   |   |   | PSO |   |   |   |   |   |
|-------|----|---|---|---|-----|---|---|---|---|---|
| ,     | 1  | 2 | 3 | 4 | 5   | 1 | 2 | 3 | 4 | 5 |
| C01   | S  | S | S | S | М   | S | S | S | S | S |
| CO2   | S  | S | М | S | S   | S | S | S | S | S |
| CO3   | S  | М | М | S | S   | S | S | S | S | S |
| CO4   | S  | S | S | М | М   | S | S | S | S | S |
| C05   | S  | S | S | S | М   | S | S | S | S | S |

S – Strongly Correlating

M – Moderately Correlating

## W – Weakly Correlating

| Core Course &<br>Title | ELECTIVE COURSE-IV<br>/ LASER AND FIBER OPTICS |                  |    |  |  |  |  |
|------------------------|------------------------------------------------|------------------|----|--|--|--|--|
| Class                  | II MSc Physics                                 | Semester         | IV |  |  |  |  |
| Internal Marks<br>-25  | External Marks-75                              | Total Marks: 100 |    |  |  |  |  |

| Level K-2 Understand<br>K-3 Apply<br>K-4 Analyze<br>K-5 Evaluate<br>K-6 Create                |
|-----------------------------------------------------------------------------------------------|
| K-3       Apply         K-4       Analyze         K-5       Evaluate         K-6       Create |
| K-4       Analyze         K-5       Evaluate         K-6       Create                         |
| K-5 Evaluate<br>K-6 Create                                                                    |
| K-6 Create                                                                                    |
|                                                                                               |
| • Learn the underlying physics of Lasers and laser systems by combining t                     |
| <b>Objectives</b> knowledge of gain media together with the aspects of design, configurati    |
| and operation of lasers.                                                                      |
| Fundamental principles of stimulated emission and how to convert it ir                        |
| coherent light emission.                                                                      |
| The manipulation of light i. e. mode selection, continuous and puls                           |
| generation, spectral narrowing etc.                                                           |
| Applications of various lasers in various fields including scientific resear                  |
| to common use.                                                                                |
| UNIT CONTENT NO OF                                                                            |
| HOURS                                                                                         |
| I LASER AND FIBER OPTICS 15 Hrs                                                               |
| Lasers: Basic concepts of stimulated emission-Population                                      |
| inversion and metastable state-Ruby laser and He –Ne laser                                    |
| production – applications.                                                                    |
| Fiber optics : Introduction –Optical fiber – total –Critical angle -                          |
| Principle of propagation of light through optical fibers - Type of                            |
| optical fibers - Fiber optics communication system -Fiber optics                              |
| sensors.                                                                                      |

| Π   | Laser Resonance and cavity modes:<br>ABCD law for Gaussian Beams; Gaussian beams in stable resonators;<br>ABCD law applied to cavities; Mode volume, Resonance; Q- factor &<br>finesse; Photon lifetime; Resonance of Hermite – Gaussian modes. 8<br>hrs 5. Laser oscillation: Threshold condition; Oscillation frequency,<br>Oscillation and amplification in a homogeneously broadened<br>transition; Gain saturation; Oscillations in an inhomogeneous<br>system; Hole burning & Lamb dip. | 15 Hrs |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| III | FIBER OPTICAL SOURCES AND COUPLERS LED<br>LED materials – fiber LED coupling – LASER – spatial emission<br>pattern of LASER – modulation response of LASER – single frequency<br>LASER – light emitting transistor. Optical Couplers: Types of optical<br>couplers – star couplers – T couplers – source to fiber coupling<br>efficiency – opto-couplers and applications.                                                                                                                    | 15 Hrs |
| IV  | ANALOG AND DIGITAL TRANSMISSION SYSTEM<br>Overview of analog links – multichannel transmission techniques –<br>multichannel amplitude modulation – multichannel frequency<br>modulation – digital transmission - line coding – NRZ codes RZ codes<br>– Block codes                                                                                                                                                                                                                            | 15 Hrs |
| V   | <b>COHERENT OPTICAL FIBER COMMUNICATION SYSTEM</b><br>Fundamental concepts – homodyne detection – heterodyne<br>detection – modulation techniques – direct detection OOK – OOK<br>homodyne detection – PSK homodyne detection – heterodyne<br>detection schemes – polarization control requirements.                                                                                                                                                                                          | 15 Hrs |

- 1. Optical Fiber Communication Gerd Keiser McGraw-Hill 2nd Edition
- 2. Optical Communication System John Gowar Prentice Hall of India -
- 3. 2nd Edition
- 4. Optical fiber and fiber optic communication system Subirkumarsarkar-
- 5. S.Chand 4th Edition (2010).

## **Reference Books:**

- 1. Svelto O.: Principles of Lasers, (V Edition), Springer 2010.
- 2. William Silfvast, Laser Fundamentals, Cambridge press, 2004.
- 3. Verdeyen, J.T.: Laser Electronics, (III Edition) Prentice Hall, 1995.
- 4. Govind P. Agarwal Fiber Optic Communication System John Wiley & Sons (2002)

#### Web-Resources:

- 1. https://www.ikbooks.com/home/samplechapter?filename=190\_Sample-Chapter.pdf
- 2. https://www.ikbooks.com/home/samplechapter?filename=190\_Sample-Chapter.pdf

#### **Course Outcome:**

CO 1: Understand the principle and structure of optical fibers.

CO 2: Understand the working principle of fiber optical sources and couplers and apply it in the optical communication systems.

CO 3: Apply the fundamental principles of optics and light wave to design optical fiber communication systems.

CO 4: Understand different analog and digital transmission systems.

CO 5: Understand and apply the concepts of coherent optical modulation and detection techniques.

#### Mapping of COs with POs & PSOs:

| CO/PO | РО |   |   |   | PSO |   |   |   |   |   |
|-------|----|---|---|---|-----|---|---|---|---|---|
|       | 1  | 2 | 3 | 4 | 5   | 1 | 2 | 3 | 4 | 5 |
| C01   | S  | S | S | S | S   | S | S | S | S | S |
| CO2   | S  | S | S | S | S   | S | S | S | S | S |
| CO3   | S  | S | S | S | S   | S | S | S | S | S |
| CO4   | S  | S | S | S | S   | S | S | S | S | S |
| CO5   | S  | S | S | S | S   | S | S | S | S | S |

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating